Misc

Proper Function

Degree of numerator does not exceed that of denominator

Strictly Proper Function

Degree of denominator exceeds degree of numerator

Block Diagrams

Linearization

$$\begin{split} 0 &= \left. \nabla h \right|_{\mathbf{x}_0} \cdot \left(\mathbf{x} - \mathbf{x}_0 \right) \\ &= \left. \frac{\partial h}{\partial y} \right|_{\mathbf{x}_0} \Delta y + \left. \frac{\partial h}{\partial \dot{y}} \right|_{\mathbf{x}_0} \Delta \dot{y} + \left. \frac{\partial h}{\partial \ddot{y}} \right|_{\mathbf{x}_0} \Delta \ddot{y} + \left. \frac{\partial h}{\partial r} \right|_{\mathbf{x}_0} \Delta r + \left. \frac{\partial h}{\partial \dot{r}} \right|_{\mathbf{x}_0} \Delta \dot{r}. \end{split}$$

 $\Delta y = (y - yeq), \ etc....$

Gain and Phase Margin

 $PM = 180^{\circ} + \angle G(j\omega_{gc}), \qquad GM = 1/|G(j\omega_{pc})|$

Second Order Dynamics

 $x^2 + 2\zeta \omega_n x + \omega_n^2 = 0$

Damping

 $\omega_n = Natural Frequency$ $\zeta = Damping Ratio$ $\omega_d = \omega_n \sqrt{1 - \zeta^2}$

Settling Time

 $t_s \approx \frac{4}{(\psi \omega_n)}$

Peak Time

$$T_p = \frac{\pi}{\omega_n \sqrt{1-\zeta^2}}$$

Overshoot

 $\% OS = 100 e^{-(\zeta \pi / \sqrt{1 - \zeta^2})}$

Laplace Table

	Table of Laplace Transforms					
	$f(t) = \mathfrak{L}^{-1} \{F(s)\}$	$F(s) = \mathfrak{L}\{f(t)\}$		$f(t) = \mathfrak{L}^{-1}\left\{F(s)\right\}$	$F(s) = \mathfrak{L}\left\{f(t)\right\}$	
1.	1	$\frac{1}{s}$	2.	e ^{at}	$\frac{1}{s-a}$	
3.	t^n , $n = 1, 2, 3,$	$\frac{n!}{s^{n+1}}$	4.	t^r , $p \ge -I$	$\frac{\Gamma(p+1)}{s^{p+1}}$	
5.	\sqrt{t}	$\frac{\sqrt{\pi}}{2s^{\frac{1}{2}}}$	6.	$t^{n-\frac{1}{2}}, n=1,2,3,$	$\frac{1\cdot 3\cdot 5\cdots (2n-1)\sqrt{\pi}}{2^n s^{n+\frac{1}{2}}}$	
7.	sin(at)	$\frac{a}{s^2+a^2}$	8.	$\cos(at)$	$\frac{s}{s^2+a^2}$	
9.	$t\sin(at)$	$\frac{2as}{\left(s^2+a^2\right)^2}$	10.	$t\cos(at)$	$\frac{s^2-a^2}{\left(s^2+a^2\right)^2}$	
11.	$\sin(at) - at\cos(at)$	$\frac{2a^3}{\left(s^2+a^2\right)^2}$	12.	$\sin(at) + at\cos(at)$	$\frac{2as^2}{\left(s^2+a^2\right)^2}$	
13.	$\cos(at) - at\sin(at)$	$\frac{s\left(s^2-a^2\right)}{\left(s^2+a^2\right)^2}$	14.	$\cos(at) + at\sin(at)$	$\frac{s\left(s^2+3a^2\right)}{\left(s^2+a^2\right)^2}$	
15.	$\sin(at+b)$	$\frac{s\sin(b) + a\cos(b)}{s^2 + a^2}$	16.	$\cos(at+b)$	$\frac{s\cos(b) - a\sin(b)}{s^2 + a^2}$	
17.	sinh(at)	$\frac{a}{s^2-a^2}$	18.	$\cosh(at)$	$\frac{s}{s^2-a^2}$	
19.	$\mathbf{e}^{a^{\prime}}\sin(bt)$	$\frac{b}{\left(s-a\right)^2+b^2}$	20.	$\mathbf{e}^{a}\cos(bt)$	$\frac{s-a}{\left(s-a\right)^2+b^2}$	
21.	$\mathbf{e}^{\alpha}\sinh(bt)$	$\frac{b}{\left(s-a\right)^2-b^2}$	22.	$\mathbf{e}^{a} \cosh(bt)$	$\frac{s-a}{\left(s-a\right)^2-b^2}$	
23.	$t^n \mathbf{e}^{at}, n=1,2,3,$	$\frac{n!}{(s-a)^{n+1}}$	24.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$	
25.	$u_{c}(t) = u(t-c)$ Heaviside Function	$\frac{e^{-cr}}{s}$	26.	$\delta(t-c)$ Dirac Delta Function	e-er	
27.	$u_c(t)f(t-c)$	$\mathbf{e}^{-cr}F(s)$	28.	$u_{c}(t)g(t)$	$\mathbf{e}^{-\alpha} \mathfrak{L} \left\{ g \left(t + c \right) \right\}$	
29.	$\mathbf{e}^{a}f(t)$	F(s-c)	30.	$t^{n}f(t), n=1,2,3,$	$(-1)^{n} F^{(n)}(s)$	
31.	$\frac{1}{t}f(t)$	$\int_x^\infty F(u)du$	32.	$\int_0^t f(v) dv$	$\frac{F(s)}{s}$	
33.	$\int_0^t f(t-\tau)g(\tau)d\tau$	F(s)G(s)	34.	$f(t\!+\!T)\!=f(t)$	$\frac{\int_0^T \mathbf{e}^{-st} f(t) dt}{1 - \mathbf{e}^{-sT}}$	
35.	f'(t)	sF(s)-f(0)	36.	f'(t)	$s^2F(s) - sf(0) - f'(0)$	
37.	$f^{(n)}(t)$	$s^{n}F(s)-s$	$s^{n-1}f($	$0) - s^{n-2} f'(0) \cdots - s f^{(n-2)}$	$(0) - f^{(n-1)}(0)$	

Other Mathematical Tables

S.No.	Form of the rational function	Form of the partial fraction
1.	$\frac{px + q}{(x - a)(x - b)}, a \neq b$	$\frac{A}{(x-a)} + \frac{B}{(x-b)}$
2.	$\frac{px + q}{(x - a)^2}$	$\frac{A}{(x-a)} + \frac{B}{(x-a)^2}$

3.	$\frac{px^2 + qx + r}{(x - a)(x - b)(x - c)}$	$\frac{A}{(x-a)} + \frac{B}{(x-b)} + \frac{C}{(x-c)}$
4.	$\frac{px^{2} + qx + r}{(x - a)^{2}(x - b)}$	$\frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-b)}$

5.	$\frac{px^{2} + qx + r}{(x - a)^{3}(x - b)}$	$\frac{A}{(x-a)} + \frac{B}{(x-a)^2} + \frac{C}{(x-a)^3} + \frac{D}{(x-b)}$
6.	$\frac{px^2 + qx + r}{(x - a)(x^2 + bx + c)}$	$\frac{A}{(x-a)} + \frac{Bx + C}{x^2 + bx + c}, \text{ where } x^2 + bx + c$

TRIGONOMETRIC IDENTITIES

RECIPROCAL IDENTITIES $\cot x = \frac{1}{\tan x} = \frac{\cos x}{\sin x}$ $\csc x = \frac{1}{\sin x}$ $\sec x = \frac{1}{\cos x}$	DOUBLE-ANGLE IDENTITIES $\sin 2x = 2 \sin x \cos x = \frac{2 \tan x}{1 + \tan^2 x}$ $\cos 2x = \cos^2 x - \sin^2 x$ $= 2 \cos^2 x - 1$ $= 1 - 2 \sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$
PYTHAGOREAN IDENTITIES $ \begin{array}{r} \sin^2 x + \cos^2 x = 1 \\ \sin^2 x = 1 - \cos^2 x \\ \cos^2 x = 1 - \sin^2 x \\ 1 + \tan^2 x = \sec^2 x \\ 1 + \cot^2 x = \csc^2 x \end{array} $	$\tan 2x = \frac{2 \tan^2 x}{1 - \tan^2 x}$ $\cot 2x = \frac{\cot^2 x - 1}{2 \cot x}$ $HALF-ANGLE IDENTITIES$ $\sin \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}}$
SUM AND DIFFERENCE IDENTITIES $\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$ $\cos(x + y) = \cos x \cos y \pm \sin x \sin y$ $\tan(x + y) = \frac{\tan x \pm \tan y}{1 \pm \tan x \tan y}$	$\cos\frac{x}{2} = \pm \sqrt{\frac{1+\cos x}{2}}$ $\tan\frac{x}{2} = \pm \sqrt{\frac{1-\cos x}{1+\cos x}} = \frac{\sin x}{1+\cos x} = \frac{1-\cos x}{\sin x}$

Final Value Theorem and Error

$$x(0) = \lim_{s \to \infty} sX(s)$$
 Final Value Theorm (D.C Gain)
 $x(\infty) = \lim_{s \to 0} sX(s)$ Initial Value Theorm

Static Error Constants

In the previous section we derived the following relationships for steady-state error. For a step input, u(t),

$$e(\infty)=e_{\rm step}(\infty)=\frac{1}{1+\lim_{s\to 0}G(s)}$$

For a ramp input, tu(t),

$$\boxed{ e(\infty) = e_{\text{ramp}}(\infty) = \frac{1}{\lim_{s \to 0} sG(s)} }$$

For a parabolic input, $\frac{1}{2}t^2u(t)$.
$$\boxed{ e(\infty) = e_{\text{parabola}}(\infty) = \frac{1}{\lim_{s \to 0} s^2G(s)} }$$

Where the type is the number of pure integrators in a system G(s)C(s)

Input	Step, A/s	Ramp , A/s^2	Parabola, A/s^3	
Error Constant	$K_p = \lim_{s \to 0} G(s)$	$K_v = \lim_{s \to 0} s G(s)$	$K_a = \lim_{s \to 0} s^2 G(s)$	
System type		Steady-State Error		
0	$\frac{A}{1+K_p}$	∞	∞	
1	0	$\frac{A}{K_{c}}$	∞	
2	0	0	$\frac{A}{K_{\star}}$	
3 and higher	0	0	0	

With Disturbance

https://www.ee.usyd.edu.au/tutorials_online/matlab/extras/ess/ess.html

$$e(\infty) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s) - \lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

= $e_R(\infty) + e_D(\infty)$

where

$$e_R(\infty) = \lim_{s \to 0} \frac{s}{1 + G_1(s)G_2(s)} R(s)$$

and

$$e_D(\infty) = -\lim_{s \to 0} \frac{sG_2(s)}{1 + G_1(s)G_2(s)} D(s)$$

we can find the steady-state error for a step disturbance input with the following equation:

$$e(\infty) = \frac{1}{\lim_{s \to 0} \frac{1}{G(s)} + \lim_{s \to 0} G_s(s)}$$

Lastly, we can calculate steady-state error for non-unity feedback systems:

By manipulating the blocks, we can model the system as follows:

Now, simply apply the equations we talked about above.

Matching Output Responses with Time Domain Plot

In order

- 1. Stability (LHP Poles)
- 2. Final value
 - G(0) multiplied by whatever the time domain input is
- 3. Poles
 - Complex poles
 - i. ω_D damped frequency is magnitude of imaginary part of pole
 - ii. $\sigma \pm j\omega$ complex conjugate pole pair in the left half of the s-plane combines to generate a response component that is of the form $Ae^{-\sigma t}sin(\omega t + \Phi)$
 - iii. $\frac{2\pi}{\omega_{p}}$ is the period of oscillation, match to plot
 - iv. When the damped frequency ζ is small <0.1? The frequency of oscillation $\omega_d\approx\omega_0$
 - $\circ \quad \text{Check for} \quad$
- 4. Zeroes
 - Undershoot when RHZ (Positive/Unstable)
 - Overshoot when LHZ (Negative/Stable) and small (close to imaginary axis) relative to dominant pole
- 5. Time Constant
 - Typically the dominant stable pole (s + a) goes to e^{-at} where $\tau = \frac{1}{a}$
 - Expect almost full decay after 5 time constants

Bode Plots

Checklist

- 1. Initial value $20log_{10}(|G(0)|)$
- 2. Final magnitude rate of change is equal to (n m) * 20 dB/dec
- 3. Total Phase Change
- 4. Existence and location of peak consistent with ω_0 when there are conjugate pair poles and $\zeta < 0.5$
- 5. Location of magnitude changes (usually a decade to either side of ω_0)
- 6. Location of phase changes (usually a decade of less to either side of ω_0)

Term	Magnitude	Phase	
Constant: K	20log ₁₀ (K)	K>0: 0° K<0: ±180°	
Pole at Origin $\frac{1}{-}$ (Integrator)	-20 dB/decade passing through 0 dB at ω=1	-90°	
Zero at Origin (Differentiator) ^s	+20 dB/decade passing through 0 dB at ω=1 (Mirror image of Integrator about 0 dB)	+90° (Mirror image of Integrator about 0°)	
Real Pole $\frac{1}{\frac{s}{\omega_0} + 1}$	 Draw low frequency asymptote at 0 dB Draw high frequency asymptote at -20 dB/decade Connect lines at ω₀. 	 Draw low frequency asymptote at 0° Draw high frequency asymptote at -90° Connect with a straight line from 0.1·ω₀ to 10·ω₀ 	
Real Zero +1 ຜ ₀	 Draw low frequency asymptote at 0 dB Draw high frequency asymptote at +20 dB/decade Connect lines at ω₀. (Mirror image of Real Pole about 0 dB) 	 Draw low frequency asymptote at 0° Draw high frequency asymptote at +90° Connect with a straight line from 0.1·ω₀ to 10·ω₀ (Mirror image of Real Pole about 0°) 	

	1		
RHP Real Zero (s - 1)	Same as above	 Phase change of -90° in frequencies a decade either side of w=1 rad/sec 	
Underdamped Poles (Complex conjugate poles) $\frac{\omega_0^2}{s^2+2\zeta\omega_0s+\omega_0^2}$ $\frac{1}{\left(\frac{s}{\omega_0}\right)^2+2\zeta\left(\frac{s}{\omega_0}\right)+1},$ $0 < \zeta < 1$	 Draw low frequency asymptote at 0 dB Draw high frequency asymptote at -40 dB/decade If ζ<0.5, then draw peak at ω₀ with amplitude H(jω₀) =-20·log₁₀(2ζ), else don't draw peak Connect lines 	1. Draw low frequency asymptote at 0° 2. Draw high frequency asymptote at -180° 3. Connect with straight line from $\omega = \frac{\omega_0}{10^{\zeta}} \text{ to } \omega_0 \cdot 10^{\zeta}$	
LHP Underdamped poles (Complex Conjugate Poles)	Same as above	 Phase change of -180 around natural frequency ω₀ (half a decade to either side) 	
Underdamped Zeros (Complex conjugate zeros) $\left(\frac{s}{\omega_0}\right)^2 + 2\zeta \left(\frac{s}{\omega_0}\right) + 1$ $0 < \zeta < 1$	 Draw low frequency asymptote at 0 dB Draw high frequency asymptote at +40 dB/decade If ζ<0.5, then draw peak at ω₀ with amplitude H(jω₀) =+20·log₁₀(2ζ), else don't draw peak 	1. Draw low frequency asymptote at 0° 2. Draw high frequency asymptote at +180° 3. Connect with straight line from $\omega = \frac{\omega_0}{10^{\zeta}} \text{ to } \omega_0 \cdot 10^{\zeta}$	

System	Parameter	Step response	Bode (gain)	Bode(phase)
$\frac{K}{\tau s + 1}$	K	К	ТКК КК	$-\frac{\pi}{2}$
	au	7		
$\frac{\omega_n^2}{s^2 + 2\psi\omega_n s + \omega^2}$	ψ	AAA.	ψ.	ψ
	ω_n	wn AMARY		ω_n
$\frac{as+1}{(s+1)^2}$	a	Le .		$-\frac{\pi}{2}$
$\frac{-as+1}{(s+1)^2}$	a	a		

Routh Criterion

If degree of characteristic polynomial is 1,2 then you can just check if there are any negatives. For higher order polynomials Routh Criterion can be used.

Special cases:

- 1. A zero in a row with at least one non-zero appearing later in the same row.
 - This means that there will be a sign change i.e an unstable pole
 - If you still want to know how many unstable poles, replace zero with epsilon and take the limit of epsilon going to zero, so it is still positive but very small.
- 2. Entire row is zeros results in three possibilities
 - Two real roots equal and opposite in sign (Unstable)
 - Two imaginary roots that are complex conjugates (Marginally Stable)
 - Four roots that are all equal distance from the origin (Unstable)

For
$$p(s) = \sum_{k=0}^{4} a_k s^k$$
, $a_4 > 0$,
 $\begin{vmatrix} s^4 \\ s^3 \\ s^2 \\ s^2 \\ s^1 \\ s^0 \end{vmatrix} \begin{vmatrix} a_4 & a_2 & a_0 \\ a_3 & a_1 & 0 \\ b_0 \doteq -\frac{a_4 a_1 - a_2 a_3}{a_3} & b_1 \doteq -\frac{a_4 \cdot 0 - a_0 a_3}{a_3} = a_0 & 0 \\ b_1 \doteq -\frac{a_4 \cdot 0 - a_0 a_3}{a_3} = a_0 & 0 \\ 0 & 0 \end{vmatrix}$

Root-Locus

- 1. There are n lines (loci) where n is the degree of Q or P (whichever is greater)
- 2. As K moves from $0 \rightarrow \infty$ the roots move from the poles of G(s) to the zeroes of G(s)
- 3. When roots are complex they occur in conjugate pairs
- 4. At no time will the same root cross over its own path
- 5. The portion to the left of an odd number of open loop poles/zeroes are part of the loci
- 6. Lines leave (breakout) and enter (breakin) the real axis at 90 degrees
- 7. If there are not enough poles or zeroes to make a pair then the extras go to or come from infinity
- 8. Lines go towards infinity along asymptotes dictated by the equation where Angle: $\Phi_A = \frac{(2q+1)}{n-m} * 180 \deg$

Centroid:
$$\frac{\sum finite \ poles - \sum finite \ zeroes}{n-m}$$
$$n-m = \#Poles - \#Zeroes$$

- 9. If there are at least two lines to infinity, the sum of all roots is constant
- 10. K going from 0 to negative infinity can be drawn by reversing rule 5 and adding 180 degrees to the asymptote angles
- 11. Phase condition: the angle of a point on the root locus to all zeros minus the angle to all poles is equal to $(2l + 1)\pi$

$$(2l+1)\pi = \angle F(s_0) = \sum_{k=1}^m \angle (s_0 - \beta_k) - \sum_{k=1}^n \angle (s_0 - \alpha_k) \text{ for } l = 0, \pm 1, \pm 2, \dots$$

$$\angle (\mathbf{s} - \mathbf{p}_j) = 180^\circ + \sum_{i=1}^m \angle (\mathbf{s} - \mathbf{z}_i) - \sum_{\substack{i=1\\i\neq j}}^n \angle (\mathbf{s} - \mathbf{p}_i)$$

Nyquist Plots

The system is only stable if:

Anticlockwise Encirclements of -1 = # Unstable RHP Poles

Plotting

- 1. Put $s = j\omega$ into the transfer function
- 2. Sweep ω from 0 to ∞
- 3. Draw reflection about real axis

There are 4 points needed in order to do this

1. $\omega = 0$

Plug 0 into the transfer function and evaluate, the Nyquist plot starts here

 $2. \quad \omega = \infty$

Plug infinity into the transfer function and evaluate, the Nyquist plot ends here

- 3. Imaginary intercepts Plug $s = j\omega$ into the transfer function and split into the real and imaginary parts. Set the real part to zero and solve for ω , and then plug that into the imaginary part
- Real intercepts Same as above, but set the imaginary part to zero and plug the frequency into the real part

No Poles at the Origin

- 1. For a Proper transfer function, entire Nyquist contour for the infinity region maps to a single point with a finite magnitude on the positive real line.
- 2. For a strictly proper transfer function, entire Nyquist contour for the infinity region maps to zero

Poles at the Origin

- 1. Instead of going to the pole at the origin, encircle it with a very small radius $\,\epsilon\,$
- 2. As this encirclement happens, the gain will tend to infinity
 - a. If the encirclement is done on the right, it will exclude this pole and gain will be $+\,\infty$
 - b. If the encirclement is done on the left, it will include the pole and gain will be $-\infty$
- 3. Phase will sweep from -90 to 90
- 4. The infinity part of the Nyquist contour should always be going clockwise?

Typical Pole–Zero Configurations and Corresponding Root Loci. In summarizing, we show several open-loop pole–zero configurations and their corresponding root loci in Table 6–1. The pattern of the root loci depends only on the relative separation of the open-loop poles and zeros. If the number of open-loop poles exceeds the number of finite zeros by three or more, there is a value of the gain K beyond which root loci enter the right-half s plane, and thus the system can become unstable. A stable system must have all its closed-loop poles in the left-half s plane.

ECE 3510

A. Stolp 4/3/08, 4/9/09

Nyquist Plot Notes

4. Plot the rest of the frequency response of G(s). It may help to start with Bode plots.

- 5. The $\omega < 0$ curve (dashed line) is simply the mirror image of the $\omega > 0$ curve about the real axis. This part of the curve is usually not necessary, it doesn't provide any more information.
- 6. Gain, k, makes entire plot grow in all directions (or shrink if k<1).

7. Z = N + P

P = OL poles in RHP (0 if open-loop stable)

N = CW encirclements of -1, CCW encirclements are counted as negative and may make up for P.

- $Z = CL poles in RHP (must be zero (or \le 0) if closed-loop stable)$
- 8. ANY CW encirclements means Closed-Loop system is UNSTABLE
 - N > 0 -> CL unstable

ECE 3510 Nyquist Plot Notes p.1

n-m = 1

N = 2 CL System CANNOT be stable

CL System CAN be stable, if $\ P \leq 2$ -N can make up for +P. and stabilize an OL unstable system

Z = N + P

X-1 CCW

CCW encirclements are counted as negative.

N = 0

CW

P = OL poles in RHP (0 if open-loop stable)

N = CW encirclements of -1. CL System CANNOT be stable if $\,N \ge 0$

 $Z = CL \text{ poles in RHP} \text{ (must be zero (or } \leq 0) if closed-loop stable)}$

ECE 3510 Nyquist Plot Notes p.2

Gain Margin (GM) and Phase Margin (PM)

ECE 3510 Nyquist Plot Notes p.3

To find the Phase Margin (PM):

- 1. Find where the Nyquist plot crosses the unit circle. These crossings separate the unit circle into regions.
- 2. Decide which of these regions have unacceptable CW encirclements.
- 3. Determine what phase change would cause the -1 point to be an unacceptable region, usually 180° / crossing

To find the Gain Margin (GM):

- 1. Find where the Nyquist plot crosses the negative real axis. These crossings separate the negative real axis into regions.
- 2. Decide which of these regions have unacceptable CW encirclements.

1 3. Determine what gain would cause the -1 point to be an unacceptable region, usually into the - crossing

4. Usually there is just one upper limit of gain- in that case report that as the Gain Margin.

unacceptable region.

5. If there is a lower limit of gain, report the Gain Margin as: GM= Lower limit, upper limit

If there is no upper limit, then report it as ...

ECE 3510 Nyquist Plot Notes p.3

